Optimal algorithms for doubly weighted approximation of smooth functions Leszek Plaskota, University of Warsaw

We consider a ρ -weighted L^q approximation in the space of functions $f: \mathbb{R}_+ \to \mathbb{R}$ with $\|f^{(r)}\psi\|_{L^p} < \infty$. Let $\alpha = r - 1/p + 1/q$ and $\omega = \rho/\psi$. Assuming ψ and ω are non-increasing and the quasi-norm $\|\omega\|_{L^{1/\alpha}} < \infty$ we construct algorithms using function/derivatives evaluations at n points with the worst case errors proportional to $\|\omega\|_{L^{1/\alpha}} n^{-r+(1/p-1/q)_+}$. In addition we show that this bound is sharp; in particular, if $\|\omega\|_{L^{1/\alpha}} = \infty$ then the rate $n^{-r+(1/p-1/q)_+}$ cannot be achieved by any algorithm using n points. Our results generalize known results for bounded domains such as [0,1] and $\rho = \psi \equiv 1$. We also provide a numerical illustration.